Birzeit University Faculty of Engineering Department of Civil Engineering

ENCE 436, Reinforced Concrete Design II 3 Credit Hours, Spring Semester 2020-2021

Prerequisites:	Reinforced Concrete Design I, Structural Analysis II
Instructor:	Jamal Zalatimo, Ph.D., ENG 412
Textbooks:	Design of Concrete Structures, Fourteenth Edition, (Nilson, Darwin, Dolan), McGraw-Hill Companies, Inc., 2010 (SI Units), 2016 (US Customary Units). American Concrete Institute, ACI–318 Building Code Requirements, 2014.
References:	Reinforced Concrete Design, Seventh Edition, (Salmon, Wang), Addison Wesley Publishers, 2007. Reinforced Concrete Design, Third Edition, (Leet, Bernal), McGraw Hill Inc., 1997.
Supplementary M	aterials: Civil Engineering and Structural Engineering Handbooks, Class Notes, Handouts, Library and Online Resources.

Course Description: This course covers the analysis and classification of columns, the design of concentrically loaded columns, the resistance of columns to eccentric axial loads, behavior under bi-axial bending, classification of two-way slabs, analysis and design of different types of two-way slabs, design of beams to resist torsional moments.

Intended Learning Outcomes:

- 1. To be able to analyze and design reinforced concrete columns, including columns affected by length and slenderness effects.
- 2. To be able to analyze and design two-way reinforced concrete slabs of any type.
- 3. To posses the basic knowledge and expertise necessary for analyzing and designing concrete members subjected to torsional moments.

Course Outline and Calendar:

Topics	Expected Duration (Weeks)		
Columns	6		
Analysis, Load Determination	262-269		
ACI Requirements			
Concentrically Loaded Columns, Load Eccentric	ity		
Interaction Diagrams	269-282		
Approximate Formulae			
Design of Concentrically Loaded Columns	282-285		
Design of Eccentrically Loaded Columns			
Behavior of Columns Under Bi-axial Bending	285-294		
Slender Columns: Analysis, Load Determination	1		
ACI Requirements, Design	299-325		
Two Way Slabs	6		
Behavior, Purpose, and Conditions of Use	424-439		
Load Transfer			
Mid-Term Exam			
Thickness Determination			
Analysis and Design: Using Tables, Direct Desi	gn Method 439-454		
Equivalent Frame Method	454-462		
Steel Selection, Steel Distribution	462-466		
	477-480		
Final Design Sketches			
Torsion	2		
Load Determination Behavior and Analysis	241-254		
ACI Requirements			
Design	254-258		
	201 200		

Assignments will be given in class and due one week later. Reading assignments are as shown in the handout.

Course Policies: Students are required to attend all classes. All unexcused absences will be penalized. Late homeworks will be accepted under special circumstances with the consent of the instructor only. Missing an exam with an acceptable excuse will result in a 30% penalty inflicted on the makeup exam.

Teaching Methods:

Lectures, Quizzes, and Discussions Assignments, Reading Assignments, Homeworks, Project

Grading System:

The overall grade of this course will be determined as follows:			
Quiz and Mid-Term Exam	30 %		
Quiz and Final Exam	35 %		
Assignments, Projects, Participation	35 %		

Grading Scale: 90 - 100

Excellent Very Good Good Fair Unsatisfactory